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Strain factorization by identical finite increments  and its use 
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Abstract--Progressive deformation of layered rocks, up to their present finite strain and bedding attitudes, is 
simulated by an identical-increment-path model. A deformation matrix connecting the initial and deformed 
states is formulated with the conceptual help of a hypothetical three-step deformation path. Two sequential non- 
coaxial rigid-body rotations bring an original horizontal bed to a pre-strain attitude; a pure shear follows the 
rotations. Thus, the deformation matrix is calculated by premultiplying the matrices representing the three stages 
of deformation. Sixteen identical tectonic deformation increments are then obtained by four times sequentially 
extracting the 'square-root' of that deformation matrix. 

The method has been applied to the Campbell block, a Late Jurassic fault-bounded turbidite sliver in the 
northern Sierra Nevada, California. The block was deformed into a train of folds during the Nevadan orogeny. 
Fourteen oriented samples were collected for March strain measurements. Based on the strains and bedding 
attitudes, the block was divided into 11 deformation bands, of three types. By applying the proposed model to the 
Campbell block, it was found that the deformation style of the block consists of a non-coaxial deformation path. 
The regional strain is accommodated among the several deformation bands by strain partitioning; the collective 
deformation indicated by this model is transpressional. 

INTRODUCTION 

THE concept of progressive deformation has been intro- 
duced to structural geologists by Flinn (1962); an orig- 
inal sphere within a rock is deformed continuously and 
progressively to form a series of different ellipsoids. The 
natural occurrence of such a history in rocks is manifest 
by the growth patterns of curved fibroid crystals in 
extension veins or in 'pressure shadows' (Durney & 
Ramsay 1973, Ramsay & Huber 1983, pp. 235-280, 
Passchier 1987). Ramsay (1967) and Elliott (1972) ela- 
borated Flinn's (1962) progressive deformation path and 
represented it mathematically by matrix algebra in a 
fixed external co-ordinate frame. In recent years, the 
concept has been applied to both mathematical forward 
modelling of deformation histories (Ramberg 1975, 
Ramberg & Ghosh 1977, Means etal .  1980, McKenzie & 
Jackson 1983, Schwerdtner & Gapais 1983, Sanderson 
& Marchini 1984, Shore & Duncan 1984, Ellis & Wat- 
kinson 1987) and regional strain analysis (Coward & 
Potts 1983, Odling 1984, Schultz-Ela & Hudleston 
1991). Among the existing mathematical models, some 
(Means et al. 1980, McKenzie & Jackson 1983, Ellis & 
Watkinson 1987) assume complete information on both 
the temporal and spatial factors, and adopt the approach 
of infinitesimal deformation; they derive a rate-of- 
deformation tensor. For most geological cases, unfortu- 
nately, the evidence for timing and spatial constraints is 
incomplete, and no rate-of-deformation tensors can be 
found. Those approaches employing finite-deformation 
(Ramberg 1975, Ramberg & Ghosh 1977, Shore & 
Duncan 1984) are forward models; for application to 
geological cases (Coward & Potts 1983, Odling 1984, 
Schultz-Ela & Hudleston 1991) they rely on trial-and- 
error fitting routines. 

In this study, I take a finite-deformation approach and 

introduce a routine to calculate deformation increments 
directly. Based on the present finite strain and bedding 
attitude of a layered rock, a deformation matrix which 
does account for any change of shape and rotation but 
not for translation is derived from the model. The 
progressive deformation is segmented into small but 
finite increments, and for mathematical simplicity all 
increments are assumed to be identical. Such a defor- 
mation path can be calculated by sequential premultipli- 
cation of every intermediate, cumulative deformation 
matrix with another incremental finite deformation 
matrix. A deformation style is obtained by examining 
each incremental finite deformation matrix and resolv- 
ing it into an incremental pure shear and an incremental 
rigid-body rotation by polar decomposition. 

A sliver of Jurassic turbidite near Colfax, California 
(Fig. 1) (called Campbell block hereafter), bounded by 
high-angle reverse faults (Day et al. 1985), is used as an 
example. This domain has been deformed into a train of 
folds. An attempt to elucidate the nature of this event, at 
least to a first order of approximation, is the subject of 
the following investigation. 

DEFORMATION MATRIX 

A deformation matrix, referred to a given co-ordinate 
system, describes an unique finite deformation; it links 
the undeformed to the deformed state of a rock (e.g. 
Flinn 1979). The deformed state described by the matrix 
can be reached by an infinite number of paths, only one 
of which, however, actually occurred (e.g. Elliott 1972). 
In the following derivation and example, all vectors, 
matrices, tensors and bedding attitudes are referred to 
the current Cartesian geographic co-ordinates, north, 
east and down (Fig. 2a). Layered sedimentary rocks are 
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Fig. 1. Simplified geological map of the Auburn-Colfax region, 
northern California. Modified from the 1:250,000 Sacramento Quad- 
rangle (Wagner et al. 1981), and Chico Quadrangle (Burnctt & 
Jennings 1962), Geologic Map of California. Box indicates position of 

the Campbell block. 

here assumed to have been laid down horizontally (Fig. 
2a); in their final states they have a measurable total 

i n ,  and their bedding attitudes can be observed at the 
. ,crop (Fig. 2 0. 

To formulate an unambiguous deformation matrix D 
for such rocks, I adapt a conceptual hypothetical defor- 
mation path (Fig. 2) also used by Cogn6 & Perroud 

(1985) to restore the paleomagnetic direction of rocks. 
The path consists of a pure shear component expressed 
by a matrix S following a rigid-body rotation expressed 
by a matrix Z. Based on this path, the matrices have the 
relationship (equivalent to the left polar decomposition 
of Elliott 1970): 

D = S Z .  (1) 

The pure shear component S can be obtained by any one 
of various strain estimating methods (Ramsay & Huber 
1983, pp. 167-214); here, the March model (1932) has 
been used. For his model one assumes that all com- 
ponents of a sample are affected uniformly by a homo- 
geneous strain (Oertel 1983). The model allows one to 
estimate the strain from its geometrical consequence, 
the modified orientation of the rock's linear or planar 
markers (Owens 1973, Chen& Oertel 1991). The strain 
estimated with the March model is called March strain. 
In order to determine the rotation Z, one has to find the 
orientation of an original bed (a material plane), defined 
by its original attitude (assumed horizontal) and by the 
azimuth of at least one material line in the bedding plane 
(say one originally oriented N-S), and the attitudes of 
the same material plane (known) and the same line 
(usually unknown) in that plane after the hypothetical 
pre-strain rotation Z. Unit vectors, dl, 71 and °1, are 
used to represent the poles of beds in the observed, the 
hypothetical pre-strain, and the original horizontal atti- 
tudes. The bedding pole °1 thus has the components 
[0.0, 0.0, 1.0]. The hypothetical pre-strain pole Zl can be 
determined (Owens 1973) by: 

Z l = k J l  S, (2) 

where the factor k scales the product of °1 and S to unity. 
The rigid-body rotation Z can be further decomposed 

(b) Operation Q 

z o 
q Q 
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(a) Initial Stage 
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Fig 2. Schematic diagrams (a)-(f) show a hypothetical deformation path. (a) Initial undeformed stage. (b) Operation Q 
rotates a horizontal bed to its first intermediate position. (c) Intermediate stage I. (d) Operation G rotates bedding about an 
axis parallel to the bedding pole of the first intermediate stage. (e) Intermediate stage II. (f) The final deformed stage after 

strain S. 
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into two non-coaxial rotations (Figs. 2b & d), G and Q, 
such that: 

Z = G Q. (3) 

Rotation matrix Q is taken to rotate °1 by an angle qa to 
Zl, about an axis qn which is normal to both °1 and Zl 
(Fig. 2b). Because the pole °1 is vertical, the axis qn is 
horizontal and can be determined by the cross product of 
°1 and Zl. Substituting the values of qa and qn into 
equation (A3) (Appendix A), the rotation matrix Q, 
representing the horizontal-axis component of rotation 
Z, is determined. Rotation matrix G, the normal-axis 
component of rotation Z, assumed to be following 
rotation Q, rotates by an angle ofga about a pole Zl (Fig. 
2d). Because the orientation of a material plane is 
insufficiently determined by its pole alone, the angle ga 
is commonly uncertain. Given a bedding attitude after a 
known total strain, and assuming that the bed was 
deposited horizontally, there exists a whole family of 
deformation matrices as a function of the variable ga 
such that: 

D = D(ga) = S G(ga) Q. (4) 

To determine a particular deformation matrix from this 
family D(ga) ,  information of the initial and deformed 
orientations of a material line on the bedding plane is 
required. Such information may be extracted from de- 
flected remanent magnetic vectors (MacDonald 1980, 
Cogn6 & Perroud 1987); provided one knows how the 
vectors respond to deformation (Borradaile 1991, Bor- 
radaile & Mothersill 1991). Otherwise, an assumption 
needs to be made (see 'Application'). 

EQUAL-INCREMENT DEFORMATION MODEL 

Because March strain, used in this study, measures 
the total strain suffered by a rock since it was deposited 
(Oertel 1983, Chen & Oertel 1989), compaction is 
treated as part of the deformation. The working defor- 
mation model is built on the assumption that after the 
compaction, C, the rock was deformed sequentially by a 
number of identical deformation increments iD. Theo- 
retically, to approach an infinitesimal deformation and 
to yield a truely progressive deformation, the size of 
increments should approach zero and their number 
infinity (Ramberg 1975). In this study, to compromise 
between excessive round-off errors caused by too many 
repeated computations and unacceptable increment 
size, I found a number of 16 increments to be the 
optimal. The model can be expressed by the matrix 
equation: 

D = (iD)16 C. (5) 

Assuming that compaction occurred in a confined basin, 
the compaction stretch tensor is uniaxial with its short- 
ening axis vertical. Because March strains are conven- 
tionally stated as constant-volume strains, the stretch 
tensor, Cij, for March compaction is deviatoric: 

 o X113 o 0]ti00 ] x1,3 0 1 0  
0 X -1/3 0 X 

X 1/3 0 0 ] 
= 0 X -1 /3  0 . 

0 0 X 2/3 

(6) 

The matrix Cij(x ) is a function of the variable compacted 
vertical elongation, x, which is smaller than unity. By 
removing the compaction from the total deformation D 
in equation (5), the tectonic deformation matrix tD is 
calculated as follows: 

tD = D C -1 = (iD)16. (7) 

The identical tectonic deformation increments are ob- 
tained by four times sequentially extracting the 'square- 
root' (see procedure in Appendix B) of the tectonic 
deformation matrix: 

iD = (tD)l/16= (tD)(t/2)4. (8) 

By substituting equations (4) and (6) into equation 
(7), then substituting the result into equation (8), one 
obtains: 

io : (S G(ga) Q C(X)-I) (1/2)4. (9) 

Equation (9) indicates that under insufficient constraints 
each member of a family of different matrices (9) could 
potentially be a deformation increment for the model. 

Once a deformation increment ~D is determined, its 
nature can be analyzed by right or left polar decomposi- 
tion (p. 12 in Spencer 1980), which decomposes the 
increment into sub-increments of pure shear, iu or W, 
and of rigid-body rotation, iR. Right polar decomposi- 
tion produces: 

iD = iR iu. (10) 

Left polar decomposition produces: 

io  = iv  iR. (11) 

Because the deformation increments iD are small, the 
two pure shear increments iu and iv are approximately 
equal; in this study, I arbitrarily use the right polar 
decomposition. The principal values and axes of iu can 
be obtained by using the procedure for analyzing the 
eigenvalues and eigenvectors of a tensor described by 
Nye (1957, pp. 41~43). The rotation axis and amount of 
rotation by the rigid-body rotation iR can be calculated 
by equations (A4) and (A5) in Appendix A. 

DEFORMATION SIMULATION 

A rock unit containing beds that were initially hori- 
zontal, deformed according to the proposed model, goes 
through 32 intermediate bedding attitudes and states of 
strain. The passage from the initial to the first incremen- 
tal stage is the compaction C, described by a defor- 
mation matrix, DI: 
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D l = C. (12) 

The second incremental stage results from the rock 
being deformed by a finite increment of pure shear iu, 
and it is described by a deformation matrix, D2: 

D 2 = iu D 1 = iu C. (13) 

In the third stage an incremental rigid-body rotation iR 
follows the strain iU, and the third-stage deformation 
matrix D3is therefore the result of D2 being premulti- 
plied by iR: 

D 3= iRD 2= iRiUC.  (14) 

For the fourth stage, the new deformation matrix, D4, 
becomes: 

D 4 = iU D 3 = iu iR iu C, (15) 

and so on. The 32 intermediate cumulative deformation 
matrices Dj( j  varies from 1 to 32) can be calculated as 
above. The state of cumulative strain, Uj, is determined 
by right polar decomposition of the corresponding de- 
formation matrix Dj. 

The intermediate bedding attitudes are obtained by 
following the orientations of two deformed material 
lines in the original bedding plane through the stages; 
one, initially parallel to the present geographic north, is 
represented by a vector N1; another, initially parallel to 
present east, is represented by El. Their subsequent 
orientations, Nljand Eli, are calculated as: 

N l j :  DiN1 T, (16) 

and 

El/---- DiE1 T. (17) 

The poles Pljto the intermediate bedding attitudes are 
the cross products of Nljwith Eli. 

The calculated path should closely mimic the actual 
deformation path of an isotropic rock deformed under 
steady-state conditions because the total deformation 
matrix is taken to be the cumulative result of identical 
increments. If, however, the rock is anisotropic or 
suffers strain softening or hardening during its defor- 
mation history, the calculated path is only an approxi- 
mation. The pure shear components of the path, ~U, are 
the incremental responses of a hypothetical isotropic 
rock subjected to steady-state conditions. 

tions of the unknown compaction factor, x (equation 6), 
and the unknown normal-axis component of initial ro- 
tation ga (equation 4). The most plausible sets of defor- 
mation matrices for the three band types were selected 
from the corresponding families by two additional 
assumptions. First, rocks throughout the block were 
assumed to have been equally compacted, and secondly, 
spatial variations of incremental pure shear within each 
type of deformation band were taken to be minimal. 

Geological setting 

The Campbell block, located 2 km west of the town of 
Colfax, California, U.S.A., is 5 km long from north to 
south and 1 km wide (Fig. 3). It is bounded by the Milk 
Ranch thrust and Bear River fault (Chandra 1961), the 
latter forming the western boundary of the Melones 
fault zone (Fig. 1). The Milk Ranch thrust juxtaposed 
the Campbell block to the older mafic plutonic rocks of 
the Lake Combie Complex on the east (Day etal.  1985); 
the Bear River fault brought the Paleozoic Clipper Gap 
Formation into contact with the western boundary of the 
block. Both faults have been shown to be W-directed 
backthrusts (Moores & Day 1984, Day et al. 1985), 
representing the latest Nevadan movements between 
160 and 150 Ma (Day et al. 1985). 

Most rocks in the Campbell block were originally 
correlated to the Mariposa Formation of the southern 
Sierra Nevada by Chandra (1961) and were mapped as 
Late Jurassic turbidites consisting of interbedded con- 
glomerate, sandstone, shale, and minor tuff by Tuminas 
(1983). From fossil evidence (Imlay 1961), the rocks 
range from early Callovian to late Oxfordian (169-156 
Ma). Sedimentary structures and sedimentary facies 
indicate that the Colfax sequence was probably de- 
posited in relatively small elongated basins (Day et al. 
1985). 

The Campbell block was later, during the Nevadan 
orogeny (Day et al. 1985), deformed into a train of folds 
in a tectonic setting still under debate. A convergent 
margin operating in the Nevadan orogeny has been 
proposed by a school of workers (Hamilton 1969, 
Moores 1972, Burchfiel & Davis 1975, Schweickert & 
Cowan 1975, Ingersoll & Schweickert 1986); but a 
contradictory transform model was preferred by Saleeby 
et al. (1978) and Harper et al. (1985). 

APPLICATION 

In the following, the model is applied to the Campbell 
block to investigate the nature and evolution of its 
deformation. The block may, to a first order of approxi- 
mation, be considered a single train of folds, and based 
on bedding attitudes and strain measurements it was 
divided into 11 deformation bands, of three types. 
Separate analysis of the data from each type produces no 
unique solution but a whole family of deformation 
matrices (equation 4), and thus of tectonic deformation 
increments (equation 9). Both these families are func- 

Fold train geometry  

The fold train in the block consists of a main, open 
syncline flanked by series of tight folds on both its east 
and west sides (Fig. 3). The axial traces of these folds 
share an approximately NNW trend at an acute angle 
(10-30 ° ) to the boundary faults (Fig. 3). The main 
syncline is nearly cylindrical, and the flanking folds have 
chevron shapes. Their average fold axis can therefore be 
calculated by Ramsay's procedure (1967, pp. 18-19), to 
trend 331 ° and plunge 33 ° (Fig. 4). The bedding attitudes 
in the block can be grouped into three sets; they are a 
steeply E-dipping (E-set), a shallowly NW-dipping (N- 
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Fig. 3. Structural map of the Campbell block, modified from Chan- 
dra (1961). Traces of anticlinal and synclinal axial hinge planes are 

indicated. Centers of attitude symbols indicate sample locations. 

set), and a steeply W-dipping (W-set) set with average 
attitudes of 136°/62°E, 25°/30°NW, and 161°/77°W, re- 
spectively, calculated by Scheidegger's (1965) method 
(Fig. 4). The N-set represents the bot tom of the main 
syncline; the W- and E-sets are representative of the 
limbs of the multiple flanking anticlines and synclines. 
The hinge areas of the flanking folds are commonly 
obscured by erosion or by vegetation; no continuous key 
bed can be traced along the fold train. The main, open 
syncline has no discrete hinge area. 

Strains at the sample points 

Fourteen oriented samples were collected away from 
hinge areas at various stratigraphic levels; their locations 

N 

© 
W. 

._~ N-set 

E-set 

Fig. 4. Lower-hemisphere equal-area projection of the :r-diagram for 
the train of folds in the Campbell block. Circle: fold axis. Open 
diamonds: poles to bedding. Filled diamonds: average poles. E, N, W: 
E-, N- and W-sets. Small-circles: 1 - cr scattering from average poles 

(Scheidegger 1965). Great-circle: normal to fold axis. 

and attitudes are indicated on Fig. 3. They are inter- 
layered siltstones and shales, with the thickness of indi- 
vidual layers varying from 2 to 20 mm. The contacts 
between these layers are disturbed, possibly by a combi- 
nation of sedimentary and tectonic processes. 

The preferred orientation of chlorite grains in the 
shale interlayers between siltstones was measured, and 
the March model (1932) for strain estimation was ap- 
plied. The procedure to estimate the strain is a 
computer-aided least-squares fitting routine (Chen & 
Oertel 1991). It derives the March strain from the 
angular density distribution function (ADF of Owens 
1973) of chlorite basal planes; the ADF was mapped 
with an automated pole-figure goniometer in the trans- 
mission mode (Wenk 1985). The data set consists of 420 
X-ray intensities taken at various sample orientations. 
Table 1 lists the principal strain values and directions 
referred to geographic co-ordinates. The principal strain 
directions are scattered within three sets of clusters 
(Figs. 5a-c). Samples belonging to the same clusters of 
principal strain directions also share a cluster of bedding 
attitudes (Fig. 4). 

Model fitting 

In analogy to Cobbold's (1977) concept of defor- 
mation bands, the Campbell block was divided into 11 
bands separated by the trace of axial surfaces (Fig. 6). 
The division was based on the coextensive grouping of 
both the bedding attitudes and the principal strain direc- 
tions into three types. Abandoning Cobbold's assump- 
tion of continuity across band boundaries, the model 
treats them as mathematical discontinuity surfaces, as 
do Johnson & Ellen (1974). Two considerations justify 
this relaxation. First, by stress concentration a folded 
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layer commonly yields preferentially in the hinge area 
(Biot 1961). Secondly, diffusional mass transport at a 
macroscopic scale (Fletcher 1982) may cause local vol- 
ume changes in the hinge areas. Because each limb of 
the fold train remains to be planar, at the regional scale, 
the rock in each deformation band away from the hinge 
areas, must be homogeneously deformed with only local 
perturbations; their total strains and perturbations can 
be represented by the average strains and by the strain 
dispersions in each of the three sets. 

The average strain was calculated by taking the arith- 
metic mean of the natural strain tensors for each of the 
sets and then converting those to conventional strain 
(Oertel et al. 1989). Table 2 lists the mean principal 
values and directions, and Figs. 5(a)-(c) show principal 
directions for the complete three sets and their means. 
The strain dispersion, _S,  in each set is evaluated by the 
equation following: 

/~33~(Sij- ksij) 2 
• . n - 1 (18) 

+__S = ' x /  ~ 9 ' 

where S,j are the components of the average strain, and 
kSij are the components of the k-th strain tensor in a 
sample population of size n. The dispersion in defor- 
mation bands of the same type reflects either measure- 
ment uncertainty or local inhomogeneities (Cobbold 
1977). In the latter case, the dispersion may have been 
caused by local rheological contrasts, by local stress 
concentrations, or by variations of the structural level 
from which the samples were taken. 

From known mean March strains and bedding atti- 
tudes, guessed normal-axis components of initial ro- 
tation, gO~e, ga n and gaw, and compaction factors, x, for 
each of the three sets, model tectonic deformation 
increments, iDe, iI) n and iDw, can be calculated by means 
of equation (9). If the mechanical properties of the rocks 
have a negligible spatial variation, then the pure shear 
increments, 'Ue, iU.and iUw, should also differ only 
minimally from one set to another. Thus, the most 
plausible tectonic deformation increments can be ob- 
tained by a search for a combination of variables, gac, 
ga,, ga w and x, that minimizes the strain dispersion from 
set to set. 

Table 3 lists five examples of combinations of gae, 
g6~ n and gawused for searches. In each search, the com- 
paction factor, x, was varied from 0.4 to I in 10 steps; all 
five searches gave the lowest strain dispersion at a 
compaction factor of 0.7 (Fig. 7). Search No. 4 with this 
compaction factor is the most plausible combination at 
which the minimal strain dispersion is obtained (Fig. 7 
and Table 3). The principal values and directions for the 
optimal pure shear increments, iUe, iu n and iUw, are 
tabulated in Table 4, and Table 5 shows the axes and of 
the corresponding rigid-body rotations, iRe, iR n and iR w . 
Figure 8 shows the geometric relationships of the opti- 
mal principal directions of pure shear increments, ro- 
tation axes and rotation senses. The axes of maximum 
elongation point downward and those of greatest short- 
ening are approximately horizontal and, with their NE-  
SW direction, approximately normal to the fold axis. 
The rigid-body rotations for the three sets are all clock- 
wise, with rotation axes spread approximately along the 
principal strain plane normal to the axis of greatest 
shortening. The W-set, with the steepest average bed- 
ding, has the most gently inclined axis. Whereas, the 
principal directions for the three sets are in close agree- 
ment, their principal values differ significantly (Table 4); 
the pure shear increment for the E-set is of the constric- 
tion type, while those for the N- and W-sets are of the 
flattening type. 

Deformation path of  the block 

The deformation path of the Campbell block, simu- 
lated with the proposed incremental deformation 
model, has 32 progressive states of strain and bedding 
attitudes for each of the three types of deformation 
bands. The intermediate states of strain are obtained by 
equations (12)-(15). The paths for the principal direc- 
tions are shown in Figs. 9(a)-(c). Whereas each pure 
shear increment for the N-set, shown as a Flinn plot (Fig. 
10), is a flattening strain, the resulting cumulative total 
strain is of the constriction type. The path of the W-set 
has a near-reversal. The evolution of the bedding atti- 
tudes for each set was calculated with the help of 
equations (16) and (17), and is plotted in Figs. 1 l(a)-(c); 
the orientations of average geometric fold axes for each 
stage are shown in Fig. l l (d) .  Figures 9 and 10 demon- 

(a) E-set ~,b) N-set (c) W-set 
N N N 

Fig. 5. Synoptic lower-hemisphere equal-area projections of principal strain axes. (a) E-set. (b) N-set. (c) W-set. Squares: 
maximum; circles: intermediate; triangles: least principal strain directions. Filled squares, circles and triangles: average 

axes. 
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Table 1. Principal strain axes and stretch values, s 1, s2, s3: max imum,  intermediate and least principal stretches 
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Trend Plunge Trend Plunge Trend Plunge 
Sample No. S1 (o) (o) $2 (o) (o) $3 (o) (o) 

E-set: 
BR-02 1.19 284 76 0.98 156 9 0.85 65 11 
CK-01 1.20 77 48 1.07 341 6 0.78 245 42 
CK-02 1.26 152 36 1.13 2 50 0.70 253 15 

N-set: 
CK-05 1.16 26 1 0.97 296 25 0.89 118 65 
CK-06 1.15 232 7 1.12 325 25 0.77 127 64 
CK-07 1.15 341 12 1.02 250 5 0.85 137 77 
CK-8A 1.14 4 26 0.97 242 47 0.90 111 32 
CK-8B 1.23 359 20 1.03 252 37 0.79 111 46 
CK-09 1.32 15 26 0.94 109 8 0.81 216 63 
CK-10 1.22 12 27 0.96 254 42 0.86 124 36 

W-set: 
BR-01 1.20 155 16 1.04 311 72 0.80 63 7 
BR-03 1.15 95 61 1.03 313 23 0.84 216 16 
CK-03 1.22 188 30 1.08 332 55 0.76 88 17 
CK-04 1.17 46 83 1.12 150 2 0.76 240 7 

Table 2. Mean principal stretches,  directions, and strain dispersions (see text) in the E-, N- and W-sets,  s I : maximum,  s 2 : 
intermediate,  s3; least 

Trend Plunge Trend Plunge Trend Plunge Strain 
Set sl (°) (°) s2 (°) (°) s3 (o) (o) dispersion 

E-set 1.14 97 6l 1.06 333 18 0.82 235 23 0.05 
N-set 1.17 8 18 0.99 270 24 0.86 131 59 0.05 
W-set 1.15 165 37 1.09 339 53 0.80 73 3 0.06 

strate that the progressive deformation in the block is 
heterogeneous. The observed geometric fold axis (Fig. 
4) did not act as an axis for rigid-body rotations; it simply 
coincides approximately with the material line --El 
(Fig. 11). 

Tectonic implications 

As being manifest from the combination of clockwise 
rotation increments with pure shear increments in the 
individual deformation bands (Fig. 8), the Campbell 
block has a non-coaxial deformation style, a combi- 
nation of progressive simple shear and progressive pure 
shear components. The fold train was formed within a 
heterogeneous shear zone. The regional deformation 
can be partitioned into fairly homogeneous deformation 
bands with local perturbations. Illustrated with Fig. 12, 
the deformation bands with the steepest bedding, i.e. 
those of the W-set, have gently plunging, SE-trending 
rotation axes; the shearing in these bands displaces rocks 
in the east over those in the west. The deformation 
bands represented by the N- and E-sets have steeply 
plunging rotation axes that facilitate primarily right- 
lateral shear. Throughout the block, the progressive 
pure shear component has greatest shortening in NE- 
SW direction. Combination of these deformation bands 
sheared the block as a whole in an east-over-west, right- 
lateral transpression (cf. Harland 1971). This agrees 
with the observed dip-slip component of the displace- 
ment along its boundary faults, the Bear River fault and 
Mike Ranch thrust, both described as east-over-west 
backthrusts by Day et al. (1985). Should these faults 
have behaved as stretching faults (Means 1989, 1990), 

then the formation of the train of folds is interrelated to 
slip on the faults. The model would then indicate an 
unobserved dextral strike-slip component of faulting. 

The principal directions of pure shear increments of 
the tectonic deformation, iUe, iu n and iUw, are approxi- 
mately consistent throughout the block (Fig. 8). If 
principal axes of the small strain increments approxi- 
mately coincide with axes of the contemporaneous stress 
tensors, the principal directions of the far-field stress 
during the Nevadan orogeny would be comparable to 
those of the pure shear increments (Fig. 8). 

DISCUSSION 

The model consists of two hypothetical deformation 
paths. The first, a purely conceptual three-step path, is 
formulated to determine a deformation matrix, or fam- 
ily of deformation matrices, dependent on the con- 
straints provided by observational data. The second, a 
more realistic incremental deformation path, serves to 
simulate a steady-state, progressive deformation and to 
examine its possible style. Generally, the incremental 
deformation path (equation 5) should be formulated 
according to the kind of strain measurement used in each 
study. For instance, had the strain S been determined by 
ellipsoidai markers that had changed shape by a tectonic 
strain only, then the compaction step C in equation (5) 
should have been omitted. 

The model accounts for deformation in the straight 
limbs of the fold train and leaves out the hinge areas 
where a complicated strain field is present. The folding 
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Fig. 6 Division of the Campbell  block into deformation bands.  The 
bands are separated by the axial traces of the folds (see Fig. 3). 
Horizontal ruling: N-set type. Slash ruling: E-set type. Back-slash 

ruling: W-set type. 

kinematics of the entire fold train is consequently 
approximated by the deformation paths of its limbs. This 
approximation should be close to actual folding kinema- 
tics, if the fold axes did not roll over laterally and if the 

Table 3. Combinat ions  of rotation angles ga in the E-, 
N- and W-sets ,  and lowest strain dispersions for searches 

Nos 1-5 

Lowest strain 
Search ga e ga n ga w dispersion 

1 0 0 0 0.001500 
2 80 40 30 0.001236 
3 115 65 50 0.001151 
4 115 60 50 0.001139 
5 125 75 60 0.001171 

Fig. 7. Variation of strain dispersion with compaction factor, x, 
changing from 0.4 to 1.0 in 10 steps, for searches Nos 1-5. Insert: 
magnified portion of diagram for compaction factors from 0.64 to 0.76. 

Fig. 8. Synoptic lower-hemisphere equal-area projection of principal 
axes of optimal pure shear  increments  and of rigid-body rotation axes 
for E-, N- and W-sets.  Symbols for principal directions as in Fig. 5. 

Circles with sense of rotation: rotation axes. 
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Fig. 9. Synoptic lower-hemisphere equal-area projections of progressive displacement of principal axes during 
intermediate-stage strains. (a) E-set. (b) N-set. (c) W-set. Open symbols (as in Fig. 5): first stage after compaction; equal 
'maximum' and 'intermediate' directions arbitrarily shown at present geographic north and east. Filled symbols: axes of 

present average March strains. Numbers: deformation stages. 
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Fig. 10. Flinn plot of deformation paths for E-, N- and W-sets. Numbers: deformation stages. Dashed line: plane-strain 
line. 
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Fig. 11. Synoptic lower-hemisphere equal-area projections of progressive line orientations. Orientations of bedding poles 
and of material lines initially parallel to the present geographic north, N 1, and east, E 1. (a) E-set. (b) N-set. (c) W-set. Open 
diamonds: initial bedding poles; filled diamonds: present bedding poles. Filled circles: material lines. Numbers: 
deformation stages. (d) Orientations of fold axes, calculated from progressive bedding poles of the three sets. Open circles: 

calculated apparent fold axes. Numbers: deformation stages. 

amplification of the fold train was achieved primarily by 
rigid-body rotations and stretches of its limbs. The most 
plausible deformation path of the fold train is obtained 
by assuming minimal spatial variation of the rheology in 
the fold train. This assumption is supported by the 
results of the fitting. Among the three sets, the optimal 

fit yields close coincidence of the principal directions of 
the incremental strain field (Fig. 8) which may indicate 
the principal directions of the far-field stress imposed on 
the entire fold train. The inferred maximum compres- 
sion direction is perpendicular to the common fold axes. 

Pure shear and rigid-body rotation increments could 
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Fig. 12. Diagrammatic representation of deformation components of the Campbell block (details see text). Three inclined 
axis with sense arrows indicate the incremental rotation axes for three types of deformation bands. Open arrows indicate the 
greatest shortening direction shared by l l  deformation bands. The half arrows decorated with their vector components 
qualitatively show, as a whole, an east-over-west, right-lateral transpression, Division patterns of the Campbell block as in 

Fig. 6. 

Table 4. Principal incremental pure shear stretches and directions of principal stretches for the E-, N- and W-sets. 
Ul, u2, u3: maximum, intermediate and least principal stretches 

Trend Plunge Trend Plunge Trend Plunge 
Set ul (°) (°) u2 (°) (°) u3 (°) (°) 

E-set 1.007972 106 82 0.997851 323 6 0.994228 232 5 
N-set 1.009445 353 61 1.000116 142 25 0.990529 238 13 
W-set 1.007501 114 84 1.000802 327 5 0.991760 237 3 

be calculated only as averages for the deformation 
bands; local perturbations had to be neglected. Because 
strains were measured only in the shale interlayers of a 
shale-siltstone succession, and because shales are pre- 
sumably the less competent of the two, the calculated 
deformation matrices may be taken as upper limits for 
the deformation of the block as a whole. 

CONCLUSIONS 

A conceptual deformation matrix can be formulated 
by setting up a simple hypothetical three-step defor- 
mation path. A procedure that extracts the square-root 
of a matrix provides a means to factorize this defor- 
mation matrix into small equal increments, which simu- 
late the progressive deformation of a rock. The calcu- 

Table 5. Orientation of rotation axes and angles of 
optimal rigid-body rotations in the E-, N- and W-sets 

Trend Plunge 
Set (°) (°) Amount of rotation 

E-set 256 56 7.76 
N-set 168 62 4.14 
W-set 136 31 5.29 

lated deformation path assumes a rock deformed under 
steady-state conditions. As shown in the example of the 
Campbell block, the incremental deformation model, 
combined with the concept of deformation bands, allows 
the study of a heterogeneously deformed region. The 
nature of deformation in that region was examined by 
polar decomposition of each increment and by finding 
the eigenvalues and eigenvectors of each pure shear 
increment, and the axis and angle of each rigid-body 
rotation increment. It was found that the deformation 
style of the block contains a simple shear component. 
The regional strain is accommodated among the several 
deformation bands by strain partition; the collective 
deformation indicated by this model is transpressional. 

Acknowledgements--I thank J. Christie, P. Cobbold, W. Dollase, B. 
Ildefonse, C. Passchier and G. Oertel for advice on the manuscript, B. 
Hacker for introducing me to the Colfax Sequence, and R. Alkaly for 
preparing thin sections for the X-ray goniometer. 

REFERENCES 

Biot, M. A. 1961. Theory of folding of stratified viscoelastic media and 
its implications in tectonics and orogenesis. Bull. geol. Soc. Am. 72, 
1595-1620. 

Borradaile, G. J. 199l. Remanent magnetism and ductile deformation 



S t r a i n  f a c t o r i z a t i o n  b y  i d e n t i c a l  f in i t e  i n c r e m e n t s  217 

in an experimentally deformed magnetite-bearing limestone. Phys. 
Earth & Planet. Interiors 67,362-373. 

Borradaile, G. J. & Mothersill, J. S. 1991. Experimental strain of 
isothermal remanent magnetization in ductile sandstone. Phys. 
Earth & Planet. Interiors 65,308-318. 

Burchfiel, B. C. & Davis, G. A. 1975. Nature and controls of 
Cordilleran orogenesis, western United States: Extensions of an 
earlier synthesis. Am. J. Sci. 275A, 363-396. 

Burnett, J. L. & Jennings, C. W. 1962. Chico Sheet; Geologic map of 
California: scale 1:250,000• California Division of Mines and Geol- 
ogy. 

Chandra, D. K. 1961. Geology and Mineral Deposits of the Colfax and 
Foresthill Quadrangles, California. California Division of Mines, 
Special Report 67. 

Chen, R. T. & Oertel, G. 1989. Strain history of the Los Prietos 
syncline, Santa Maria basin, California: a case of post-tectonic 
compaction. J. Struct. Geol. 11,539-551. 

Chen, R. T. & Oertel, G. 1991. Determination of March strain from 
phyllosilicate preferred orientation: A semi-numerical method. 
Tectonophysics 200, 173-185• 

Cobbold, P. R. 1977. Description and origin of banded deformation 
structures• I. Regional strain, local perturbations, and deformation 
bands. Can..I. Earth Sci. 14, 1721-1731• 

Cogn6, J. P. & Perroud, H. 1985. Strain removal applied to paleomag- 
netic direction in an orogenic belt: the Permian red slates of the 
Alpes Maritimes, France. Earth Planet. Sci. Lett. 72, 125-140. 

Cogn6, J. P. & Perroud, H. 1987. Unstraining paleomagnetic vectors: 
the current state of debate. Eos 68,711-712. 

Coward, M. P. & Potts, G. J. 1983. Complex strain patterns developed 
at the frontal and lateral tips to shear zones and thrust zones. J. 
Struct. Geol. 5,383-399. 

Day, H. W., Moores, E. M. & Tuminas, A. C. 1985. Structure and 
tectonics of the northern Sierra Nevada. Bull. geol. Soc. Am. 96, 
436-450. 

Durney, D. W. & Ramsay, J. G. 1973. Incremental strains measured 
by syntectonic crystal growths. In: Gravity and Tectonics (edited by 
De Jong, K. A. & Scholten, R.). Wiley, New York, 67-96. 

Elliott, D. 1970. Determination of finite strain and initial shape from 
deformed elliptical objects. Bull. geol. Soc. Am. 81, 2221-2236. 

Elliott, D. 1972. Deformation paths in structural geology. Bull. geol. 
Soc. Am. 83, 2621-2638. 

Ellis, M. & Watkinson, A. J. 1987. Orogen-parallel extension and 
oblique tectonics: The relation between stretching lineations and 
relative plate motions. Geology 15, 1027-1030. 

Fletcher, R. C. 1982. Coupling of diffusional mass transport and 
deformation in a tight rock. Tectonophysics 83,275-291. 

Flinn, D. 1962. On folding during three-dimensional progressive 
deformation. Q. J. geol. Soc. Lond. 118,385-433. 

Flinn, D. 1979. The deformation matrix and the deformation ellipsoid. 
J. Struct. Geol. 1,299-307. 

Hamilton, W. 1969. Mesozoic California and the underflow of the 
Pacific mantle. Bull. geol. Soc. Am. 80, 2409-2430. 

Harper, G. D., Saleeby, J. B. & Norman E. A. S. 1985. Geometry and 
tectonic setting of sea-floor spreading for the Josephine ophiolite, 
and implications for Jurassic accretionary events along the Califor- 
nia margin. In: Tectonostratigraphic Terrances of the Circum-Pacific 
Region (edited by Howell, D. G.). Circum-Pacific Council for 
Energy and Mineral Resources, Houston, 239-258. 

Harland, W. B. 1971. Tectonic transpression in Caledonian Spitsber- 
gen. Geol. Mag. 108, 27-42. 

lmlay, R. W. 196t. Late Jurassic ammonites from the western Sierra 
Nevada, California. Prof. Pap. U.S. geol. Surv. 374D, D1-D30. 

Ingersoll, R. V. & Schweickert, R. A. 1986. A plate-tectonic model 
for Late Jurassic ophiolite genesis, Nevadan orogeny and forearc 
initiation, northern California. Tectonics 5,901-912. 

Johnson, A. M. & Ellen, S. D. 1974. A theory of concentric, kink, and 
sinusoidal folding and of monoclinal flexuring of compressible, 
elastic multilayers. !. Introduction. Tectonophysics 21,301-339. 

MacDonald, W. D. 1980. Net tectonic rotation, apparent tectonic 
rotation, and the structural tilt correction in paleomagnetic studies. 
J. geophys. Res. 85, 3659-3669. 

March, A. 1932. Mathematische Theorie der Regelung nach der 
Korngestalt bei Affiner Deformation. Z. Kristallogr. 81,285-297. 

McKenzic, D. & Jackson, J. 1983. The relationship between strain 
rates, crustal thickening, paleomagnetism, finite strain and fault 
movements within a deformation zone. Earth Planet. Sci. Lett. 65, 
182-202. 

Means, W. D. 1989. Stretching faults. Geology 17,893-896. 
Means, W. D. 1990. One-dimensional kinematics of stretching faults. 

J. Struct. Geol. 12,267-272. 

Means, W. D., Hobbs, B. E., Lister, G. S. & Williams, P. F. 1980. 
Vorticity and non-coaxiality in progressive deformations. J. Struct. 
Geol. 2,371-378. 

Moores, E. M. 1972. Ultramafics and orogeny, with models of the 
U.S. Cordillera and Tethys. Nature, Lond. 228,837-842. 

Moores, E. M. & Day, H. W. 1984. Overthrust model for the Sierra 
Nevada. Geology 12, 416--419. 

Nye, J. F. 1957. Physical Properties of Crystals. Oxford University 
Press, London. 

Odling, N. E. 1984. Strain analysis and strain path modelling in the 
Loch Tollie gneisses, Gairloch, NM Scotland. J. Struct. Geol. 6, 
543-562. 

Oertel, G. 1983. The relationship of strain and preferred orientation of 
phyllosilicate grains in rocks: A review. Tectonophysics 100,413- 
447. 

Oertel, G., Engelder, T. & Evans, K. 1989. A comparison of the strain 
of crinoid columnals with that of their enclosing silty and shaly 
matrix on the Appalachian Plateau, New York. J. Struct. Geol. 11, 
975-993. 

Owens, W. H. 1973. Strain modification of angular density distri- 
butions. Tectonophysics 16,249-261. 

Passchier, C. W. 1987. Stable positions of rigid objects in non-coaxial 
flow--a study in vorticity analysis. J. Struct. Geol. 9,679-690. 

Ramberg, H. 1975. Particle paths, displacement and progressive strain 
applicable to rocks. Tectonophysics 28, 1-37. 

Ramberg, H. & Ghosh, S. K. 1977. Rotation and strain of linear and 
planar structures in three-dimensional progressive deformation. 
Tectonophysics 40, 309-337. 

Ramsay, J. G. 1967. Folding and Fracturing of Rocks. McGraw-Hill, 
New York. 

Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern 
Structural Geology, Volume l: Strain Analysis. Academic Press, 
London• 

Saleeby, J. B., Goodin, S. E., Sharp, W. D. & Busby, C. J. 1978. Early 
Mesozoic paleotectonic-paleogeographic reconstruction of the 
southern Sierra Nevada region. In: Mesozoic Paleogeography of the 
Western United States (edited by Howell, D. G. & Mcdougall, 
K. A.). Pacific Coast Paleogeography Symposium 2, Soc. econ. 
Paleont. Miner. Pacific Sec. 311-336. 

Sanderson, D. J. & Marchini, W. R. D. 1984. Transpression. J. Struct. 
Geol. 6,449--458. 

Scheidegger, A. E. 1965. On the statistics of the orientation of bedding 
planes, grain axes and similar sedimentological data. Prof. Pap. 
U.S. geol. Surv. 525, C164-C167. 

Schultz-Ela, D. D. & Hudleston, P. J. 1991. Strain in an Archean 
greenstone belt of Minnesota. Tectonophysics 190, 233-268. 

Schweickert, R. A. & Cowan, D, S. 1975. Early Mesozoic tectonic 
evolution of the western Sierra Nevada, California. Bull. geol. Soc. 
Am. 86, 1329-1336. 

Schwerdtner, W. M. & Gapais, D. 1983. Calculation of finite in- 
cremental deformations in ductile geological materials and struc- 
tural models. Tectonophysics 93, TI-T7. 

Spencer, A. J. M. 1980. Continuum Mechanics. Longman, New York. 
Shore, P. J. & Duncan, I. J. 1984. Finite strains from non-coaxial 

strain paths. I. computational techniques. Tectonophysics 110, 127- 
144. 

Tuminas, A. C. 1983. Geology of the Grass Valley-Colfax region, 
Sierra Nevada, California. Unpublished Ph.D. dissertation, 
University of California, Davis. 

Wagner, D. L., Jennings, C. W., Bedrossian, T. L. & Bortugno, E. J. 
1981. Geologic map of the Sacramento Quadrangle, California: 
California Division of Mines and Geology, Regional Map Series Map 
No. 1A, scale 1:250,000. 

Wenk, H. -R. 1985. Measurement of pole figures. In: Preferred 
Orientation in Deformed Metals and Rocks: An Introduction to 
Modern Texture Analysis (edited by Wenk, H.-R.). Academic 
Press, Orlando, 11-47. 

APPENDIX A 

FORMULATION AND ANALYSIS OF A 
ROTATION MATRIX 

A rotation matrix, Q = Qij, represents a rigid-body rotation pro- 
cess; it has the properties of an orthogonal matrix: 

Q I = QT; (A1) 



218 R.T.  CHEN 

and 

IOJ = 1; or 1 =eijkQliQ2jQ3k , (A2) 

where eok is the alternating matrix. The process rotates a body rigidly 
through an angle a clockwise about an axis pointing in the direction of 
a unit vector n with components n i. The rotation matrix Q has the 
following components (equations 6.11 in Spencer 1980): 

Qir = 6ir COS a "F e i j r r l j  sin a + (1 - cos a)nin r, (A3) 

where 6q is the identity matrix. By inversion of equation (A3), a given 
rotation matrix Q with components Qir represents a rotation about the 
axis u through the angle a: 

eikjQij • (A4) 
nk = (e O ,o O ~1/2' rij ~ iI~ rpq ~-~pq z 

and 

a = cos - j  (6qQij - 1) (A5) 
2 

Hence, the operation of a rotation matrix can be analysed by means of 
equations (A4) and (A5). 

APPENDIX B 

EXTRACTING THE 'SQUARE-ROOT' OF A 
MATRIX 

In analogy with the scalar case, a matrix, q-I, is defined as the 
square-root of another matrix, W, which is the product of self- 
multiplication of the matrix, qt, i.e.: 

W = rHrH. (B1) 

In the existing literature on matrix algebra, there has been discussion 
of the properties of the 'square-root' for symmetric matrices hut not 
for asymmetric matrices. It exceeds the scope of this paper to delimit 
the existence and uniqueness conditions for such a matrix or to attempt 
its general analytic solution. To obtain rHij from a given 3 x 3 matrix 
Wij, one has to solve a set of nine simultaneous non-linear equations. 
Instead, I propose an iterative numerical solution. 

Let matrices W and rH have components as follows: 

[~Wll WI2 Wl3q 
(Wq)=lW2, W22 W2s / 

LW31 W32 W33-] 

(82) 

and 

~'Hix rill2 rill3 7 
(rHij) = / rH2l rH22 rH23/" 

LrH31 rn32 rH33J 
(B3) 

Express (B 1) with indices, subject to the Einstein summation conven- 
tion: 

Wij = rHikrHkj. (B4) 

Let a tentative square-root matrix, H, have components//,7. They 
deviate from the components of the true square-root matrix, rH, by 
small 'square-root deviations', 6Hij, thus: 

rHii = Hij + 6Hii. (B5) 

Substituting (85) into (B4), it becomes: 

Wij = (Hik + 6Hik)(Hkj + dHkj ). (B6) 

The deviations of the product components of self-multiplication of the 
tentative matrix, H, /rom those of the given matrix, W, can be 
calculated as the 'product discrepancies', AWq: 

AWij = Wij - HikHkj. (B7) 

Rearranging the terms of (B7), one obtains: 

Wij = HikHkj + AWij. (B8) 

Substituting (B6) into (B8), it becomes: 

(Hit + 6Hik)(Hkj + 6Hkj ) = HikHkj + AWij, (B9) 

and therefore 

HikaHkj + 6HikHkj + 6Hik6Hkj = AWl i. (BI0) 

Because the square-root deviations, 6Hij, are comparatively small, in a 
numerical approximation the terms 6H,.k6Hkj can be ignored. 
Equation (B13) can thus be linearized as: 

Hik6Hki + 6HikHkj = AWij. (Bl l )  

Equation (B 1 I) represents a set of nine simultaneous equations, which 
in matrix form are: 

A x = b, (B12) 

where A is the matrix of coefficients: 

A =  

-Hi i  + Hll H21 

H12 Hll + H22 

HI3 //23 

H21 0 

0 H2~ 
0 0 

H31 0 
0 

0 

0 HI3 
0 0 

HI2 0 

/-/31 /t23 

/]32 0 

H22 + H33 0 

0 H33 + HII 

0 HI2 

H32 HI3 

~3 
Hl l + ~ 3  

0 

0 

0 

~J 
0 

0 

Hi3 
0 

0 

~3 
0 

~ 3 +  ~2  
~ 3  

HI2 0 

0 Hi2 
0 0 

//22 + HII /]21 

HI2 1-122 + H22 

H13 //21 

H32 0 

0 0 H32 

Hs~ 0 0 

o- 
0 

Hi3 
0 

0 

H23 

Hs~ 
Hs2 

H33 + H33 

(B13) 

Consider the left-hand column vector in equation (B 12), x, formed by 
the nine square-root deviations, 6Hij , as the unknown with the known 
column vector, b, formed by the nine product discrepancies, AWij, on 
the right-hand side. The unknown vector x can be found by Cramer's 
rule, if the coefficient matrix A is non-singular. Because of the 
linearization of equation (B11), equation (B5) is rewritten as: 

rHij ~ ~'Hii = Hq + 6Hii. (B14) 

The tentative square-root matrix H can be recalculated now by using 
equation (B14). The components of the refined matrix, "Hq, in the 
next iteration approach more closely those of the true square-rooted 
matrix rl-l. By iterated solution of equation (B12) and substituting the 
results into equations (B14) and (B7), one can obtain a square-root 
matrix to within any desired precision. In the current study, the 
extracting procedure was programmed in Pascal run on Macintosh 11. 
By five or six iterations, the values of square-root deviations, 6~ j ,  can 
be reduced to an order of 10 -12. 


